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Short Papers

Optimization of an Electrodynamic Basis for Determination
of the Resonant Frequencies of Microwave Cavities
Partially Filled with a Dielectric

JERZY KRUPKA

Abstract —In this paper, a method of optimization of an electrodynamic
basis is presented for determination of resonant frequencies of the micro-
wave cavities containing dielectric samples. It is shown that the use of the
suitable basis, consisting of several functions only, ensures a high accuracy
of calculation of these frequencies.

The presented method is useful for solving the boundary problem for the
elliptic partial differential equation if the considered region has a regular
boundary and is filled with inhomogeneous medium,

I. THEORY

It is often necessary in practice to determine frequencies of the
microwave resonant cavity in relation to the permittivity of the
sample which fills this cavity. As it is known, this problem can be
reduced to determination of the eigenvalues of the following
boundary problem:

{L¢=jwM¢ )

AXE=0onS

L; 0 wvx M= €0k, 0 _E
“lex o M=o | =i

¢, is the relative complex pemﬁttivity inside the cavity, E, H are

where
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the electric and magnetic fields inside the cav1ty, and S is the
surface of the cavity.

Eigenvalues w of this problem can be accurately calculated if
the sample fills completely two of the cavity dimensions. In other
cases, approximation methods must be used. In the most accurate
of them the electromagnetic field is expanded into a series

¢ =L o9, )
1

where {a;} is the set of coefficients to be determined and {¢,} is
the set of basis functions (the electrodynamic basis). If the
electrodynamic basis is given, the well-known methods (e.g., the
Rayleigh—Ritz or the Galerkin methods [1], [2]) are employed to
calculate eigenvalues w and eigenvectors {a,}. The main problem
is how to find the best electrodynamic basis. Usually the basis
contains functions which are solutions of the boundary problem
(1) for the empty cavity. In this paper, the basis is formed by
functions which are solutions of the boundary problem (1) for the
cavity partially filled with a dielectric in a suitable manner. The
dielectric fills completely two cavity dimensions. The cavity with
such a filling is called the basis cavity.

The nature of such modification can be explained as follows.
‘We want to achieve the best similarity of distributions of electro-
magnetic fields in the basis cavity (Fig. 1(b)) and in the cavity
which fields we are looking for (Fig. 1(a)). In this particular case,
shown in Fig. 1(b), we can achieve that by changing ¢, and (or)
the radius 7.

Similar modification of an electrodynaniic basis was presented
for the first time in [4] for the rectangular cavity with a rectangu-
lar dielectric sample where the authors assumed that €, = Re(¢,)
= const. In this paper, generalizations are made by assuming any
¢, value and by optimization of the choice of particular basis

0018-9480,/83 /0300-0302501.00 ©1983 IEEE
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()

Fig. 1. Resonant cavities including dielectric samples. (a) The cavity whose
solutions (resonant frequencies) are to be found. (b) The basis cavity with
known solutions.

2 z
L L
h h
s a a
(€Y , ®)

Fig. 2. Cylindrical TEy;,-mode cavities including dielectric samples. (a) The
cavity whose solutions (resonant frequencies) are to be found. (b) The basis
cavity with known solutions.

functions. All calculations and experiments presented. in this
paper refer to. the cylindrical quasi TE,;-mode cavity filled with
a dielectric as it is shown in Fig. 2(a). The calculations are carried
out by the Rayleigh-Ritz method. Since we are looking for
frequency of the specific type of mode, the basis can be reduced
to the class of rotational functions corresponding to quasi TE,,,,,,
modes of the basis cavity shown in Fig. 2(b).

The optimization of an electrodynamic basis consists in a
choice of N basis functions from their infinite set to achieve the
most accurate solution for fixing N and sample and cavity
parameters. For the TE,,; mode, the optimization is easy because
its angular frequency value calculated by the Rayleigh—Ritz
method is in excess of the accurate value. It is well known that
Fourier’s coefficients for higher modes of basis functions de-
crease with their frequency. Therefore, reducing somewhat the
general problem one can find N of the most significant basis
functions among K functions having the lowest frequency values.
The choice of N elements among K can be made in K!/(N —
K)!/N! ways. Therefore; optimal basis functions were selected
differently. First, the effect of particular basis functions on the
convergence of the angular frequency of TE,,; mode was ex-
amined. In order to do that, two basis functions were selected:
the predominant TE,, and the examined TE ,,,,. The TE,,-mode
frequency was then found by the Rayleigh—Ritz method using
only these two modes. This was done for each of K — 1 examined
functions. Next, the best N — 1 basis functions were chosen (those
for which the lowest values of TE;;-mode frequency have been
obtained). These functions together with the TE,;, basis function
made the best basis consisting of N functions, and were employed
as in (2). The solution with all N functions were then obtained by
the Rayleigh—Ritz method. Exemplary calculations have been
carried out for the following cavity and sample parameters:

a=25mm,/=25mm,r,=12.5mm, 4 =2 mm,
Re(é,)=10,¢,=1,5,and 10, K=37, N<15.

Fig. 3(a) represents the set of K basis functions from which
optimized sets of basis functions were chosen. Fig. 3(c), (d), and
(e) represent optimized sets containing N =15 basis functions
against a background of this set for various €, values. Numbers in
these figures indicate the sequence of selecting of basis functions.
Number 1 indicates the predominant TE,;, function, number 2
indicates the best function among K — 1 examined functions (in
the meaning as it is described above), and so on.
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Fig. 3. (a) The set of K = 37 basis functions from which the sets of optimized

functions are chosen. (b) The sequence of selecting of basis functions for the
nonoptimized basis and ¢, = 1 (functions are ordered in sequence of increas-
ing. frequencies). (¢), (d), and (e) The sequence of selecting of basis functions
for optimized bases for different ¢, values.
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Fig. 4. Errors of frequency shift determination of cylindrical TEg;-mode
cavity containing a dielectric sample for various sets of basis functions where
wy is the angular frequency value calculated with the basis containing N
functions, w, is the angular frequency of an empty cavity, and wyqy is the
lowest value of the angular frequency selected from values calculated with
different 15-function bases.

From Fig. 3(c),(d),(e) one can also find the sets with N <15
functions. For example, the set with N =4 functions for ¢, =5
(Fig. 3(d)). contains functions marked in this figure numbers
1,2,3,4. This means (Fig. 3(a)) that these are TE,,;, TEy,,
TE,3, and TE s modes.

Fig. 3(b) represents the set of nonoptlmlzed basis functions in
sequence of increasing frequencies for €, = 1. Results of applica-
tions of different basis are represented in Fig. 4. This figure
shows how far the suitable choice of the ¢, value effects a
convergence and an accuracy of the solution: A particular case
occurs when the basis contains only one function. Then the
angular frequency value of the cavity can be obtained from the
formula (3) (it is the first term of the Rayleigh—Ritz method).
This formula may be also treated as the well-known Slater’s
theorem [5] assuming that the unperturbed cavity is the basis

cavity .
ff/‘o(ér ~¢,)E,E* dv
1~ Wy Ve
—— = ()

! fffeoebfbfz do
v,
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Fig. 5. Errors of frequency shift determination of cylindrical TEg;;-mode

cavity containing a dielectric sample plotted against ¢,. Calculations have
been carried out with single-function bases.

where &, is the complex angular frequency of the cavity calcu-
lated with the single function basis (if losses do exist w, is real),
w,, is the angular frequency of the basis cavity, E, is the electric
field inside the basis cavity, and V, is the volume of the cavity.

For ¢, =1, the formula (3) yields a well-known zero approxi-
mation perturbation method. It is clear that there exists such
€4 = €;0p fOr Which the lowest angular frequency value w; = w; o
is obtained. Obviously, the €,,,, value depends on the sample
radius, .., €, = Re(¢,) forr, /a —> 1 and €, — 1 for 1, /a —
0. Fig. 5 represents standardized differences between angular
frequencies w, for any €, values and the angular frequency w oy,.
w, values can be treated as the starting points of the Rayleigh—Ritz
method for different bases (addition of the subsequence basis
functions in the Rayleigh—Ritz method improves the previous
result).

Let us now return to the results shown in Fig. 4. Two char-
acteristic ranges of €, values can be distinguished.

1) €,> €, Then if €, values increase, w, values (starting
points) increase and the convergence of the solution becomes
better. For a small number of basis functions, the first element
has a decisive significance so the best solution is obtained for the
basis with €, =¢,.,. For a larger number of basis functions
(N >10) both elements have similar significance so solutions
obtained for bases with different €, values have similar accuracy.

2) €, < €40pt- Then if the ¢, values decrease, w, values increase
and the convergence of the solution becomes worse. Therefore the
application of the basis consisting of empty cavity modes is not
efficient.

II. EXPERIMENTS

Experiments have been carried out, first of all, in order to
check whether there exist differences between angular frequency
values obtained by the method described above and experimental
values which are accurate. In order to do that, first the value of
the permittivity Re(é,) of the Al,O, sample filling completely the
cross section of the cavity was calculated. The Re(¢,) value was
found from the two first measurements represented in Table 1.
Next, the sample diameter was gradually reduced and the
frequency of the cavity with the sample was measured each time.
For the Re(¢€,) value obtained by experiments, theoretical calcu-
lations were carried out by the Rayleigh-Ritz method. Results
are shown in Fig. 6 and in Table L.

One can see that there are insignificant differences between
experimental results and those obtained by the Rayleigh—Ritz
method using 15-function optimized basis. But there are signifi-
cant differences between experimental results and those obtained
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Fig. 6. Angular frequency shifts of the cylindrical TEy,;-mode cavity with
Al,O; sample plotted against the sample diameter. Theoretical results are
compared with experimental results. ——Rayleigh-Ritz method with the
optimal 15-function basis and €, = €;4,,. —-~ Rayleigh-Ritz method with
the single-function basis and €, = Re(¢,). —- -— Rayleigh~Ritz method with
the single-function basis and €,=1 (zero approximation perturbation
method). ------ Rayleigh-Ritz method with the optimal single-function basis
(€5 = €pp)- © Experimental points.

TABLEI
RESONANT FREQUENCIES OF THE CYLINDRICAL TE ), -MODE
CAVITY FOR DIFFERENT DIAMETERS OF THE SAMPLE WHICH FILLS

THAT CAVITY
No | g [ f w =27Tf w ebopt Comment
mm MHz MHz MHz
measured measured leglculated with |approximate

15-function values

optimized basis
1 0 o 9535.50 59913.3 —_— 1.00 {exact ) {empty cavity

! basis cavity

2| 223 |10 9400.40 59064.5 —_ 9.15 {exact Sbopre(ér)
31202 |09 9402.50 59077.7 59078.0 8.06
4117.9 10.8 | 9413.20 59144.9 59146.6 8.75 partially
5 ] 15.7 0.7 §435.00 592819 59282.4 7.75 filled
6|13.4 |0.6 | 9463.40 59460.3 59462.7 6.25 cavity
7112 [0.5 | 9482.10 59640.6 59644.1 [a.oo

by various perturbation formulas (the Rayleigh—Ritz method
with single-function bases).

II. CONCLUSIONS

By optimization of an electrodynamic basis presented in this
paper, the high calculation accuracy of frequencies of the micro-
wave cavity with a dielectric sample is obtained, using several
functions only. Here, however, some difficulties arise. First, one
must solve K transcendental equations in order to calculate
angular frequencies of the basis cavity. Second, the new basis
functions are more complicated than empty cavity basis func-
tions. Therefore such an optimization is recommended in the
following cases: 1) when a very high accuracy of calculations is
required, and 2) when the computation time must be short
or/and the available computer memory is limited.

If required computation accuracy is not too high, the variant of
the perturbation method described in this paper is recommended
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rather than the Rayleigh-Ritz method with empty cavity basis
functions. Although this paper refers to the specific boundary
problem, conclusions are general and can be useful for other
similar cases.
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Propagation in Longitudinally Magnetized Compressible
Plasma Between Two Parallel Planes

HILLEL UNZ, SENIOR MEMBER, IEEE

Abstract —The propagation of plasma waves in compressible, single
fluid, macroscopic plasma, between two parallel, perfectly conducting planes,
with longitudinal magnetostatic field parallel to the boundaries and in the
direction of propagation is investigated for the different hybrid plasma
wave modes of propagation.

I. PROPAGATION IN PARALLEL PLANE WAVEGUIDE

The propagation of plasma waves in compressible, single fluid,
macroscopic plasma, between two parallel perfectly conducting
planes, with transverse magnetostatic field parallel to the
boundaries, has been recently investigated [1]. In the present
short paper the theory will be extended to the case where the
magnetostatic field is parallel to the boundaries and in the
longitudinal direction of propagation of the waves.

Using small signal theory approximation, and assuming
harmonic time variation e*’“’, the wave equation for the electric
field E in the magnetoplasma has been found [1] in the form

1 — 1 =
-~ =S VXVXE+—V(V-E)
kO kl

+0—mE+ﬁ(vxvxE—%EWﬁéo(n
0
where k, is the electromagnetic wave number, k| is the acoustic

wave number, X is proportional to the average plasma density Ny,
and Y is proportional to the magnetostatic field H,. The wave

magnetic field H and the wave velocity field # may be found [1]*

from the plasma wave electric field E.

It is assumed that the compressible plasma is confined by two
perfectly conducting parallel planes at x = 0 and x = ¢, with the
magnetostatic field in the longitudinal direction of propagation z
ertly )

maw

Y=vz=
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Since the solution will be independent of the y-axis, one may
assume that each one of the plasma wave components will be in
the form

E(x,z)= E’/(a) e %@t 1),

®3)

The constant y represents ‘the propagation constant of the plasma
wave modes propagating in the z direction, and it depends on «
to be determined from the boundary conditions.

Substituting (2) and (3) in (1), and taking from (3) d/dx =
ia,d/3y=0,3/0z=— iy, onc obtains three homogeneous lin-
ear algebraic equations for E*, E”, and E®. For a nontrivial
solution, the determinant of the coefficients should be zero, and
developing this determinant, one obtains

[k (1= 0)= (e 4y K31 - 1) -8 +77)]
+ Y2 (k3 - a® =) [ K3 X (k3 —v?)

(= 0y7) (- a )] =0

j=x,y,z.

4)
where
k= wlpe
and
S=k3/k?.

Equation (4) could be rearranged to give a cubic equation in

terms of a?, with the coefficients of the equation depending on

72

According to the theory of linear algebraic equations, one may
express E¥ and E* in terms of E*. All the other plasma wave
components H and # of the plasma wave hybrid modes could be
expressed in terms of E7 as well, by using the relationships given
previously [1]. The following boundary conditions will be applied
in the present problem:

E,=0 atx=0andx=aq (5a)
E,=0 atx=0andx=a (5b)
u,=0 atx=0andx=aq,. (5¢)

II. THE PLasMA WAVES HYBRID MODES

The equation which relates a® with the propagation constant vy
of the plasma waves hybrid modes is given in (4). For a given v,
one may solve the cubic equation (4) in order to obtain the
corresponding characteristic values + «;, +a,, and +a; in
terms of y. It may be assumed, therefore, that the longitudinal
electric field component E, of the plasma waves hybrid mode is
given in the form

E,=[A;sina;x + Bjcosa,x + Aysina,x + B,cosa,x
+ Assinasx + Bycos ayx]e’ @73 (6)

where 4,, A,, A, and B|, B,, B, are arbitrary constants. Using (6)
and the analysis described above, one may find E,, in terms of the
trigonometric functions and the arbitrary constants in (6) and
the constants D,, = D,,(2,,y), where m =1,2,3. Using (6) and
the corresponding relationship in the previous paper [1], one may
find u, in terms of the trigonometric functions and the arbitrary
constants in (6) and the constants P, (aZ,v), where m =1,2,3.
Using (6) in the boundary conditions (5a) one obtaing

B,+B,+B,=0

A;sinaja + Bycosaja + A,sinaya + Bycos aya

(7a)

+ Assinaza + Bycosaza=0, (7b)
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