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Short Papers

Optimization of an Electrodynamics Basis for Determination

of the Resonant Frequencies of Microwave Cavities

Partially Filled with a Dielectric

JERZY KRUPKA

Abstract —In this paper, a method of optimization of an electrcsdymuoic

basis is presented for determination of resonant frequencies of the micro-

wave cavities containing dielectric samples. It is shown that the use of the

suitable basis, consisting of severaf functions only, ensnres a high accuracy

of cafcnlation of these frequencies.

The presented method is nsefuf for solving the boundary problem for the

elliptic partial differential equation if the considered region has a regular

boundary and is filled with iohomogeneous medium.

I. THEORY

It is often necessary in practice to determine frequencies of the

microwave resonant cavity in relation to the perrnittivity of the

sample which fills this cavity. As it is known, this problem can be

reduced to determination of the eigenvalues of the following

boundary problem:

{

L+= jm&f+
(1)

ZX2=Oon S

where

t, is the relative complex permittivity inside the cavity, ~, fi are
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the electric and magnetic fields inside the cavity, and S is the
surface of the cavity.

Eigenvalues o of this problem carI be accurately calculated if
the sample fills completely two of the cavity dimensions. In other
cases, approximation methods must be used. In the most accurate
of them the electromagnetic field is expanded into a series

(2)
i

where {aj} is the set of coefficients to be determined and {+i} is

the set of basis functions (the electrodynamics basis). If the

electrodynamics basis is given, the well-known methods (e.g., the

Rayleigh-Ritz or the Galerkin methods [1], [2]) are employed to

calculate eigenvalues a and eigenvectors {a,}. The main problem

is how to find the best electrodynamics basis. Usually the basis

contains functions which are solutions of the boundary problem

(1) for the empty cavity. In this paper, the basis is formed by
functions which are solutions of the boundary problem (1) for the

cavity partially filled with a dielectric in a suitable manner. The

dielectric fills completely two cavity dimensions. The cavity with

such a filling is called the basis cavity.

The nature of such modification can be explained as follows.

We want to achieve the best similm-ity of distributions of electro-

magnetic fields in the basis cavity (Fig. 1(b)) and in the cavity

which fields we are looking for (Fig. 1(a)). In this particular case,

shown in Fig. 1(b), we can achieve that by changing c~ and (or)
the radius r~.

Similar modification of au electrodynarnic basis was presented

for the first time in [4] for the rectangular cavity with a rectangu-

lar dielectric sample where the authors assumed that Cb= Re ( <,)

= const. In this paper, generalizations are made by assuming any

c ~ value and by optimization of the choice of particular basis
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Fig. 1. Resonant cavities including dielectric samples, (a) The cavity whose

solutions (resorxmt frequencies) are to be found. (b) The basis cavity with

known solutions.

tilEkL
r~ a a

(a) (b)

Fig. 2. Cylindrical TEO, l-mode cavities including dielectric sasnples. (a) The

cavity whose solutions (resonant frequencies) are to be found. (b) The basis

cavity with known solutions.

functions. All calculations and experiments presented in this
paper refer to the cylindrical quasi TEOI ,-mode cavity filled with
a dielectric as it is shown in Fig. 2(a). The calculations are carried
out by the Rayleigh-Ritz method. Since we are looking for
frequency of the specific type of mode, the basis can be reduced
to the class of rotational functions corresponding to quasi TEO~~
modes of the basis cavity shown in Fig. 2(b).

The optimization of an electrodynamics basis consists in a

choice of N basis functions from their infinite set to achieve the

most accurate solution for fixing N and sample and cavity

parameters. For the TEO1, mode, the optimization is easy because

its angular frequency value calculated by the Rayleigl-Ritz

method is in excess of the accurate value. It is well known that

Fourier’s coefficients for higher modes of basis functions de-

crease with their frequency. Therefore, reducing somewhat the

general problem one can find N of the most significant basis

functions among K functions having the lowest frequency values.

The choice of N elements among K can be made in K !\(N –

K)!/N ! ways. Therefore, optimal basis functions were selected
differently. First, the effect of particular basis functions on the
convergence of the angular frequency of TEO,, mode was ex-
amined. In order to do that, two basis functions were selected:
the predominant TEO,, and the examined TEOm~.The TEO, ,-mode
frequency was then found by the Rayleigh-Ritz method using
only these two modes. This was done for each of K – 1 examined

functions. Next, the best N – 1 basis functions were chosen (those

for which the lowest values of TEO1 l-mode frequency have been

obtained). These functions together with the TEO1, basis function

made the best basis consisting of N functions, and were employed

as in (2). The solution with all N functions were then obtained by

the Rayleigh–Ritz method. Exemplary calculations have been

carried out for the following cavity and sample parameters:

a=25mm, l=25mm, r~= 12.5 mnl, ~=2mnl,

Re(t,)= 10, cb=l,5, andlO, K=37, N<15.

Fig. 3(a) represents the set of K basis functions from which
optimized sets of basis functions were chosen. Fig. 3(c), (d), aud
(e) represent optimized sets containing N =15 basis functions
against a background of this set for various ~~values. Numbers in
these figures indicate the sequence of selecting of basis functions.
Number 1 indicates the predominant TEO,, function, number 2
indicates the best function among K – 1 examined functions (in

the meaning as it is described above), and so on.
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Fig. 3. (a) The set of K = 37 basis functions from which the sets of optimized

functions are chosen. (b) The sequence of selecting of basis functions for the

nonoptirnized basis and cfi = 1 (functions are ordered in sequence of increas-

ing frequencies). (c), (d), and (e) ‘f’be sequence of selecting of basis functions

for optimized bases for different c~ values.

N

Fig. 4. Errors of frequency shift determination of cylindrical TEO, ,-mode

cavity containing a dielectric sample for various sets of basis functions where

@N is the angular frequency value calculated with the basis containing N
functions, UO is the angular frequency of an empty cavity, and @Mm is the

lowest vahre of the angular frequency selected from values calculated with

different 15-function bases.

From Fig, 3(c), (d), (e) one can also find the sets with N <15
functions. For example, the set with N = 4 functions for c~ = 5
(Fig. 3(d)) contains functions marked in this figure numbers
1,2,3,4. This means (Fig. 3(a)) that these are TEOI,, TEOZZ,
TEOz~, and TE025 modes.

Fig. 3(b) represents the set of nonoptimized basis functions in

sequence of increasing frequencies for t~ = 1. Results of applica-
tions of different basis are represented in Fig. 4. This figure
shows how far the suitable choice of the c~ value effects a
convergence and an accuracy of the solution. A particular case
occurs when the basis contains only one function. Then the
angular frequency value of the cavity can be obtained from the
formula (3) (it is the first term of the Rayleigl-Ritz method).
This formula may be also treated as the well-known Slater’s
theorem [5] assuming that the unperturbed cavity is tie basis
cavity
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Fig. 5. Errors of frequency shift determination of cylindrical TEOI ,-mode

cavity containing a dielectric sample plotted against c ~. Calculations have

been carried out with single-function bases.

where A, is the complex angular frequency of the cavity calcu-

lated with the single function basis (if losses do t@st o, is real),

Qb is the angular frequency of the basis cavity, Eb is the electric

field inside the basis cavity, and VC is the volume of the cavity.

For Cl, =1, the formula (3) yields a well-known zero approxi-

mation perturbation method. It is clear that there exists such

~h = ~~jopt for w~ch the lowest angular frequency v~ue CJI = co1OPt
is obtained. Obviously, the cbOPt value depends on the sample

radius, e.g., cbOPt+ Re(t,) for r$/a + 1 and CbOpt-+ 1 for rS/a -+

O. Fig. 5 represents standardized differences between angular

frequencies u, for any c~ values and the angular frequency u, .Pt.

o, values can be treated as the starting points of the Rayleigh–Ritz

method for different bases (addition of the subsequence basis

functions in the Rayleigh-Ritz method improves the previous

result).

Let us now return to the results shown in Fig. 4. Two char-

acteristic ranges of c~ values can be distinguished.

1) Cl, > cbOP,. Then if c~ values increase, o ~ values (starting

points) increase and the convergence of the solution becomes

better. For a small number of basis functions, the first element

has a decisive significance so the best solution is obtained for the

basis with cl, = chOPt. For a larger number of basis functions

(N> 10) both elements have similar significance so solutions

obtained for bases with different c~ values have similar accuracy.

2) (h < C~OPt.Then if the c~ values decrease, o, values increase

and the convergence of the solution becomes worse. Therefore the

application of the basis consisting of empty cavity modes is not

efficient.

II. EXPERIMENTS

Experiments have been carried out, first of all, in order to

check whether there exist differences between angular frequency

values obtained by the method described above and experimental

values which are accurate. In order to do that, first the value of

the permittivity Re ( .?,) of the Af ~03 sample filling completely the

cross section of the cavity was calculated. The Re ( {r) value was

found from the two first measurements represented in Table I.

Next, the sample diameter was gradually reduced and the

frequency of the cavity with the sample was measured each time.

For the Re ( f,) value obtained by experiments, theoretical calcu-

lations were carried out by the Rayleigh–Ritz method. Results

are shown in Fig. 6 and in Table I.

One can see that there are insignificant differences between

experimental results and those obtained by the Rayleigh–Ritz

method using 15-function optimized basis. But there are signifi-

cant differences between experimental results and those obtained
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Fig, 6. Angulm frequency shifts of the cylindrical TEO, l-mode cavity with

Al ~03 sample plotted against the sarrrple diameter, Theoretical results are

compared with experimental results. —Rayleigh- Ritz method with the

optimal 15-function basin and c~ - cb2Pt. –.- Rayleig&Ritz method with

the single-function basis and Cb = Re ( 6.). –. .– Rayleigh–Ritz method with

the single-function basis and c ~ = 1 (zero approximation perturbation

method). ------ Rayleigl– Ritz method with the optimal single-function basis

(66 = ~~o,, ). @ Experimental points.

TABLE I

RESONANT FREQUENCIES OF THE CYLINDRICAL TEO1, -MODE

CAVITY FOR DIFFERENT DIAMETERS OF THE SAMPLE WHICH FILLS

THAT CAVITY

No r~ rs a f cd = Zxf w s bopt
Comment

mm MHz MHz MHz 1

measured measured ca[cutotm wth appmxlmnte
15- funct, on values
C$)t(rn,zec basis

? o 0 9535.50 59913.3 — 1.00 (exact ) em m y cavity

I

2 22.3 1.0 9600.&o
bas!s .mv[ty

S9064.5 — 9.15 (exact ) gb ~, ~e(~r )

3 20.2 0.9 9402.50 59077.7 59078.0 9.OC

II 17,9 0.8 9413.20 59164.9 59146.6 8.75 DOrtlolly I
5 15.7 0.7 9435.00 59281.9 59282.4 7.75 f,lled

6 12.4 0,6 9463.40 59460.3 59462.7 &25 Cavity

7 1?.2 0.5 9492.10 596406 59644.1 /..00

by various perturbation formulas (the Rayl~igh-Ritz method

with single-function bases).

III. CONCLUSIONS

By optimization of an electrodynamics basis presented in this

paper, the high calculation accuracy of frequencies of the micro-

wave cavity with a dielectric sample is obtained, using several

functions only. Here, however, some difficulties arise. First, one

must solve K transcendental equations in order to calculate

angular frequencies of the basis cavity. Second, the new basis

functions are more complicated than empty cavity basis func-

tions. Therefore such an optimization is recommended in the

following cases: 1) when a very high accuracy of calculations is

required, and 2) when the computation time must be short

or/and the available computer memory is limited.

If required computation accuracy is not too high, the variant of

the perturbation method described in this paper is recommended
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rather than the Rayleigh-Ritz method with empty cavity basis

functions. Although this paper refers to the specific boundary

problem, conclusions are general and can be useful for other

similar cases.
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Propagation in Longitudinally Magnetized Compressible

Plasma Between Two Parallel Planes

HILLEL UNZ, SENIORMEMBER,IEEE

,4Mract —The propagation of plasma waves in compressible, single

fluid, macroscopic plasm% between two paraflel, perfectly conducting planes,

with lorrgittrdinaf magnetostatic field parallel to the boundaries and in the

direction of propagation is investigated for the different hybrid plasma

wave modes of propagation.

I. PROPAGATION IN PARALLEL PLANE WAVEGUIDE

The propagation of plasma waves in compressible, single fluid,

macroscopic plasma, between two parallel perfectly conducting

planes, with transverse magnetostatic field parallel to the

boundaries, has been recently investigated [1]. In the present

short paper the theory will be extended to the case where the

magnetostatic field is parallel to the boundaries and in the

longitudinal direction of propagation of the waves.

Using small signal theory approximation, and assuming

harmonic time variation e+ ““, the wave equation for the electric

field ~ in the magnetoplasma has been found [1] in the form

+(l–x)E+ #vxvxz-k:E)xi7=o (1)
o

where k. is the electromagnetic wave number, k, is the acoustic
wave number, X is proportional to the average plasma density No,
and ~ is proportional to the magnetostatic field Ho. The wave
magnetic field ~ and the wave velocity field ii may be found [1]
from the plasma wave electric field ~.

It is assumed that the compressible plasma is confined by two
perfectly conducting parallel planes at x = O and x = a, with the

magnetostatic field in the longitudinal direction of propagation z

(2)
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Since the solution will be independent of the y-axis, one may

assume that each one of the plasma wave components will be in

the form

“(x, Z) = ,EJ(a)eLaXe’(@~ -Y’), j=x, y,z. (3)

The constant y represents the propagation constant of the plasma

wave modes propagating in the z direction, and it depends on a

to be determined from the boundary conditions.

Substituting (2) and (3) in (l), and taking from (3) 8/t3x =

irt, 13/dy = O, d/dz = – iy, one obtains three homogeneous lin-

ear algebraic equations for E’, Ey, and E’. For a nontrivial
solution, the determinant of the coefficients should be zero, and
developing this determinant, one obtains

[k;(l-x)-(a’+#)] 2[k;(l-x)-8(a’+ y’)]

+Y’(k; –d-y ’)[k:x(k; -y’)

-(k~-8y2)(k~-a2 -y2)]=0 (4)

where

k;= W2/W

and

r?= k;/k;.

Equation (4) could be rearranged to give a cubic equation in
terms of a’, with the coefficients of the equation depending on

Y2.
According to the theory of linear algebraic equations, one may

express E’ and E} in terms of E’. All the other plasma wave
components ~ and z of the plasma wave hybrid modes could be
expressed in terms of E’ as well, by using the relationships given

previously [1]. The following boundary conditions will be applied

in the present problem:

EZ=O atx=Oandx=a (5a)

EY=O atx=Oandx=a (5b)

Ux=o atx=Oandx=a. (5C)

II. THE PLASMA WAVES HYBRID MODES

The equation which relates a’ with the propagation constant y

of the plasma waves hybrid modes is given in (4). For a given y,

one may solve the cubic equation (4) in order to obtain the

corresponding characteristic values + a 1, + SX2, and f as in

terms of y. It may be assumed, therefore, that the longitudinal

electric field component E= of the plasma waves hybrid mode is

given in the form

Ez= [A1sinalx +B1cosakx +A2sinazx+B2cosa2x

+ A3sinsx3x + B3COSa3x] e’(”’-~z) (6)

where A,, A ~, A ~ and B1, B2, B3 are arbitrary constants. Using (6)

and the analysis described above, one may find Ey in terms of the

trigonometric functions and the arbitrary constants in (6) and

the constants D~ = D~ (a;, y), where m = 1,2,3. Using (6) and
the corresponding relationship in the previous paper [1], one may
find UX in terms of the trigonometric functions and the arbitrary

constants in (6) and the constants Pm( C&, y), where m =1,2,3.

Using (6) in the boundary conditions (5a) one obtains

BI+B2+B3=0 (7a)

A1sinala +B1cosa, a+ A2sina2a+B2cosa2a

+ A3sina,a + B3cosa3a = O. (7b)
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